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Abstract. We develop a discrele lime version of the so-called Brussels formalism in non- 
equilibnum statistical mechanics for continuous endomorphisms of a Banach space. We show 
that. if the evolution operator U and the projector P are such that PO is o compact operator 
and the speclral radius of ( I  - P ) U ( l  - P) is strictly less than the spectral radius of U ,  then 
the formalism holds and the evolution operator is quasicompact. 

1. Introduction 

One of the oldest and most challenging problems in non-equilibrium statistical mechanics, 
not to say its raison d’itre, is the reconciliation of the irreversible macroscopic laws 
governing the behaviour of matter in bulk with the basic time symmetric microscopic 
equations of motion. A fertile branch in this endeavour was initiated by Ludwig 
Boltzmann. whose search for the origin of the second law of thermodynamics led him 
to a characterization of dynamical processes in many-body systems by a kinetic equation, 
which is now referred to as the Boltzmann equation. Since then numerous such equations 
have been derived: the Fokker-Planck equation for a Brownian particle, the Vlasov and 
Balescu-Lenard equations for a plasma, to name but three. Their common feature is that 
they describe the Markovian dynamics of single particle distributions under certain physical 
conditions: the Boltzmann equation, for example, gives a correct description only for dilute 
gases. These conditions are usually formulated in terms of a limiting process for which an 
appropriately chosen scaling parameter of the system vanishes (see, e.g., [44] and references 
therein). 

However, in the past thirty years, agroup working in Brussels has developed a formalism 
which dispenses with this limiting procedure, and provides instead a means of deriving 
kinetic equations which are valid over somejnite range of values of the relevant parameter. 
In essence, the so-called ‘Brussels formalism’ is based on the construction of an idempotent 
operator n, which commutes with the Liouville operator of the system. In other words: 
ll projects onto a subspace which is invariant under the Liouvillian. It is for this reason 
that the formalism is also referred to as ‘subdynamics’. Moreover, the elements of the 
subspace can be shown to obey an autonomous evolution equation, which is the desired 
kinetic equation. 

Although this brief summary hardly does justice to the sophistication of the approach 
it does represent the key aspects of the theory, as it stood in 1975. Further details may 
be found in the book by Balescu [3] or in the original articles, e.g. [37,12,38,13]. The 
theory was later generalized to include systems with a time-dependent Liouvillian, in order 
to describe open systems (see, e.g., [4,23,71). 
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In more recent times. the Brussels group, in collaboration with colleagues based in  
Austin (Texas), has turned much of its attention to the study of so-called 'large Poincar6 
systems', by which is meant a special class of non-integrable systems characterized by a 
continuous spectrum (cf [34,39,35]). These are introduced by taking the thermodynamic 
limit of non-integrable systems which contain a finite number of particles. Emphasis 
has shifted from the derivation of kinetic equations to the derivation of a new spectral 
representation of the Liouvillian, thereby explicitly admitting the possibility of complex 
eigenvalues which decay exponentially with time. Nevertheless, the existence of an 
operator IT, or more generally a set {nci)]isl of such operators satisfying the conditions of 
completeness 

n"' = 1 
i d  

idempotence and orthogonality 
n(i)nU) = g..n(i) 

and commutativity with the Liouville operator 
' I  

Ln(i) = n(r)L 

remains at the heart of the approach. 
Another new development was put forward by Hasegawa and Saphir in a series of 

papers 114-17,431, who adapted the formalism to the investigation of chaotic mappings. In 
particular, they were able to derive a generalized spectral decomposition of the Frobenius- 
Perron operator of the baker's transformation and the Bernoulli map. Their analysis was 
later extended by Antoniou and Tasaki [LZ] to the p-adic baker's transformation and the 
R6nyi map. 

In this paper we will take up the idea of a discrete time version of the Brussels formalism 
and focus on conditions for which the formalism holds. For the continuous time scenario 
Coveney and Penrose [8] have only recently formulated a set of theorems which provide 
rigorous conditions under which at least a part of the formalism holds in an arbitrary Hilbert 
space. After a brief definition of the notation used in this paper, we will derive the discrete 
time analogue of the generalized master equation in a Banach space setting; this leads to the 
Brussels decomposition of the resolvent of the evolution operator used by Hasegawa and 
Saphir. We will show that this decomposition rigorously holds if the evolution operator U 
and the projector P are such that PU is a compact operator. Under the additional assumption 
that the spectral radius of ( I  - P ) U ( I  - P) is strictly less than the'spectral radius of U 
we will be able to recoverthe main features of the Brussels formalism (theorem 2). The 
class of operators fulfilling these conditions will be shown to be the class of quasicompact 
operators (theorem 1) and will be studied in some detail in section 5. Finally we give an 
example of a system for which the evolution operator is quasicompact. 

2. Notation 

Throughout the present paper, z denotes a complex number and X a non-zero complex 
Banach space. We use the notation L(X) for the Banach algebra of bounded linear 
operators on X and K ( X )  for the closed two-sided ideal of compact operators in L(X) . For 
T E L(X) , the symbols e ( T )  and o ( T )  will be used for the resolvent set and the spectrum 
of T respectively; r ( T )  denotes the spectral radius of T and A ( T )  := Iz : IzI > r ( T ) ]  the 
annulus of convergence of the von Neumann series of ( z  - T)- ' .  Finally, we write N ( T )  
for the kernel and R ( T )  for the range of T .  
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3. The discrete time master equation 

One of the earliest attempts to generalize Boltzmann's kinetic equation to arbitrary systems 
was made by Pauli [33] who derived a master equation for the time evolution of the 
probability distribution of a quantum system by assuming that this was driven by the 
random steps in a Markov process, a hypothesis which is not in general consistent with 
the Liouville equation. Pauli's approach was later improved by van Hove [21,22], while 
Prigogine and his collaborators [40] arrived at an exact master equation for an, arbitrary 
system. Similar equations were derived by Nakajima [321, Zwanzig [45], and Montroll [29]. 
Their equivalence was shown by Zwanzig [46]. 

To keep the discussion general we take a Banach space X as a state space and U E L(X) 
as the generator of the dynamical semigroup (U"],,Ri. 

The derivation of the discrete time master equation starts by introducing a pair of 
projectors P and Q with P ,  Q E L(X) and Q = I - P into the difference equation of the 
dynamical semigroup 

U,,, = UU" 

with the initial condition 

U,  = I 

which leads to the following pair of equations: 

PU,+, = PUPV,  + P U Q U n  (1) 

Q u n + ~  = QuPC/, + QuQUn.  (2) 

The Brussels school refers to the P and Q subspaces as the 'vacuum' and the 
'correlations', since in the original formalism P was meant to project on the diagonal part 
of the density matrix of the system. It is important to state that there is nothing explicitly 
required of the dimensionality of these projectors which, according to this school, may be 
either finite or infinite. 

Although this pair of operator equations can be solved by iteration, it is much easier 
to use z-transform techniques, which are the discrete time analogue of Laplace transforms 
(the appendix should be consulted for more details). It is not difficult to see that all the 
terms occurring in (1) and (2 )  are of geometric order owing to the submultiplicativity of 
the operator norm in a Banach space. We have, for example, 

IlPUPUnll d llPll2 IIUII"+' . 
We may, therefore, apply a z-transform and get 

z(PU(Z) - PUo) = PUPU(z)  + PUQUO) 

z(QU(Z) - PUo) = QUPU(z) + QUQU(2) 

where we used the shifting theorem (see the appendix) and the definition 
z U(2) := 2 [ U J  = - 

2 - U '  
For z E A(QUQ) we can solve for QU(z) in (4) 

(3) 

(4) 
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where we used U0 = I .  Inserting this into (3) yields 

z ( P U ( i )  - P )  = P U P U ( z )  + P U Q  

0 F Bandtlow and P V Coveney 

QUPLl ( z ) .  (6)  Z 
+ "'z - Q U Q  z - Q U Q  

The Brussels school coined suggestive names for the continuous time analogues of the 
operators in (5) and (6). which we shall also adopt: the 'collision operator' 

the 'destruction operator' 
1 D(z)  := P U Q  

z - Q U Q  
the 'creation operator' 

QLIP 
1 

z - Q U Q  
C(z) := 

and the 'reduced resolvent' 
1 

S(z) := Q Q .  
I: - QUQ 

(9) 

All of them are L(X) -valued functions holomorphic in A ( Q U Q ) .  For the sake of 
completeness we list their n-domain representations, that is their images under an inverse 
z-transform { O ~ U Q ( Q U Q ) ~ - ~ Q U P  n 2 I 

n = O  
(11) *" := 2,-'[4(z)l= 

The desired master equation may now be obtained from (6) qud inverse e-transform 

PUn+t = PUPUn + Dn+lQ + qn*PUn (15) 
where '** denotes the convolution of two sequences 

n 
$"*Pun := c$iPu"-i 

i=O 

Equation (15) is an operator identity which, acting on an initial state fo E X, provides a 
relation for the P-component of the iterates f n  := U,fO of f o  

(16) Pfn+t = P u P f n  + D ~ + I  Qfo + $n*pfn. 

This is a discrete time version of the generalized master equation. 
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We have thus arrived at an exact equation for the evolution of the reduced densities Pf.. 
The second term on the right-hand side of (16) describes the influence of initial data about 
Qfo at time n = 0 on the subsequent time evolution of the system. If Q is appropriately 
chosen it can be assumed that its effect should disappear in the long time (large n )  limit. 
Equation (16) is, however, non-Markovian, due to the summation present i n  the third or 
collision term. Thus, to pass from this equation to a Markovian equation, we need to restrict 
the influence of $n for large n. We will turn to this problem in section 6. 

4. The Brussels class 

In order to understand the reasoning behind the Brussels formalism, we need to derive an 
expression for U(z) in terms of the operators previously introduced. The z-transformed 
version of the master equation (15) is 

z(PU(z) - P )  = PUPU(Z) + Z’D(Z) + $(Z)PU(Z). 

We can formally solve for PU(z)  

which, added to the equation for QU(z) (5) 

QU(z) = zS(z) +C(z)PU(z) 

yields the ‘Brussels decomposition’ of U(z), namely 

U(z) = [ P  +C(Z) lPU(Z)  + zS(z) 

For a justification of the manipulations involved so far the existence of [z - P U P  - $(z)]-’ 
has  to be ensured. This can be done by imposing the condition that P and U are such that 
P U  is compact. Note that dim P X  e CO is a sufficient but not necessary condition for P U  
to be compact. 

Proposition I .  Let U ,  P .  and Q be defined as above, with P U  E I c ( X ) .  Then 
z/[z - P U P  - $(z)l is 

(i) meromorphic in the annulus A(QUQ) with only a finite number of poles zi, i E I 
(ii) holomorphic at infinity. i.e. ( l / z ) / [ l /z  - P U P  - $(l/z)]  is holomorphic at 0. 

Proof: For z E A(QUQ) the operator + ( P U P  - $( i ) )  is holomorphic. Since the product 
of a compact operator and a bounded operator is compact i ( P  U P  - $(z)) is also compact 
due to PU being compact. Furthermore 1 - f ( P U P - $ ( z ) )  is invertible for z large enough. 
This is easily seen by taking into account that 

II$(z)II < (IIPll llull IlQll)’(lil - llQUQll)-’ 

becomes arbitrary small for z large, and hence 
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for z large enough. The first assertion now follows from the analytic Fredholm theorem 
(see [41, theorem VLl41 and [IO, theorem VU.111). For the proof of the second part let 

Z E { Z : [ Z I  < I / r ( Q U Q ) ] f o r r ( Q U Q ) # O o r z a r b i t r ~ i f r ( Q U Q ) = O .  Then 

0 F Bandtlow and P V Coveney 

m 
z $ ( ~ / ~ )  = C Z ~ + ~ P U Q ( Q U Q Y Q U P  

“=O 

hence [ l  - z P U P - z $ ( l / z ) ] - ’  holomorphic at 0. Using the same expansion it is possible 
to show that 

lim ~ ( Z P U P  - z+(l /z)((  = o 
1-0 

and therefore that [l - z P U P  - z$(l/z)]-’ is invertible at i = 0. This completes the 
proof. 0 

Remark. The same arguments may be used to prove a slightly extended version of the 
proposition, in which the annulus A ( Q U Q )  is replaced by an arbitrary connected open 
subset of e ( Q U Q ) .  

This proposition justifies the application of an inverse r-transform to equation (17) thus 
yielding a new expression for Un 

The contour C has to enclose the poles zi, i E I as well as u ( Q U Q ) .  As the integrand is 
meromorphic in A ( Q U Q )  we can deform C such as to separate the contributions from the 
poles resulting in a splitting of the integral 

U n -  - CA” + E:” + I , .  + CAP1 + (18) 
where p = card I is the number of poles of the integrand in A ( Q U Q )  and for I 4 i < p 

The new contours C; enclose the poles z; only and C‘ is a circle around the origin with 
radius r ( Q U Q )  + E  with E > 0 small enough. 

Note that the contribution from S(z)  in (19) vanishes, since S(Z) is holomorphic in 
A(QU e).! The operators E!) are the so-called ‘asymptotic evolution operators’. which 
play an important rdle in the Brussels approach; we shall study them further in section 6. 
For the moment we only remark that these operators are supposed to describe the dominant 
long time behaviour of U,. 

In order to obtain the splitting of the evolution in (18) the existence of a pole in A( QUQ) 
needs to be ensured. It obviously suffices to require that 

r ( Q u Q )  < W )  
which is a mathematical formulation of the hypothesis of rapid decay of correlations 
frequently assumed in derivations of Markovian kinetic equations. 

We now cast these results into the following definition. 
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DejXrion. Let X be a Banach space. An operator U E C(X) is said to belong to the 
Brussels class " ( X )  of X if there is a projector Q E L ( X )  such that ( I  - Q)U is compact 
and r ( Q U Q )  < r ( U ) .  

An explicit characterization of the Brussels class is given in the next section. 

5. Quasicompact operators and the Brussels class 

To give a characterization of the Brussels class put forward in the previous section we 
introduce a class of operators called quasicompact operators. 

Definition. 
compact operator K such that 

A bounded operator U is said to be quasicompact if there is a k E W and a 

J J u k  - K J J  < r(U)" 

The set of all quasicompact operators on X will be denoted by & ( X ) .  

We begin by proving some elementary properties of quasicompact operators 

Lemma 1. Let U E L(X) be an operator such that Uk is compact for some k E NO. Then 
U is quasicompact if and only if it is not quasinilpotent, i.e. r ( U )  # 0. 

Proof: The proof follows directly from IIUK - Uk$ = 0 c: r ( U ) .  0 

For a new characterization of Q(X) we need the following definition. 

Defvtition. Let T E L(X) . Define 

K ( T )  := inf(llT - KII : K E K ( X )  } 

We can now formulate the following lemma 

Lemma 2. An operator U E L(X)  is quasicompact if and only if 

lim K(u")'" < r ( U ) .  
"+CO 

Prooj The 'if part is trivial. For the 'only if part we show that 

K(U'"+") < K ( U ~ ) K ( U " )  (20) 

because then the sequence K(U")"" converges to its greatest lower bound (by [36, section I, 
problem 981) and the assertion follows,, To prove (20) observe that for XI. Kz E K ( X )  

K(umin) < ((Umi" - (U"'K2 4- KIU" - K L K ~ ) J /  

< 11 U'" - KI /I IIU" - K211 . U 

The sum and the product of two quasicompact operators need not be quasicompact, as 
the following example shows. 



and with a similar argument 

Now, since S2, T 2  E K ( X )  and S and T are not quasinilpotent, S and T are quasicompact 
by lemma 1. However, ST is a projector with an infinite dimensional range, and therefore 
ST 6 K ( X )  , Since K ( X )  is closed in L ( X )  it follows that 

r ( T )  = r ( S T )  = r(S + T )  = 1 . 

K ( ( S T ) y "  + 1 a s n - + o o .  
Therefore ST is not quasicompact by lemma I .  Furthermore (S + T)'" = I 6 K ( X )  and 
again it follows that S + T is not quasicompact. 

Unlike K ( X )  the class of quasicompact operators Q ( X )  is not a subspace of L ( X )  and 
not an ideal of L ( X )  in general. Nevertheless the following is true. 

Proposition 2. U is quasicompact if and only if its adjoint U* is quasicompact. 

Pro06 Since an endomorphism K of a Banach space is compact if and only if its adjoint 
is compact (see, e.g.. [19, propositions 42.2 and 42.31) we get 

I / ( u * ) ~ - K * ~ ~  = J I u ' - K I I  < r ( ~ ) = r ( ~ * ) .  U 

Q(X) is not closed in  L(X)  . We show this by giving an example of a sequence of 
quasicompact operators converging uniformly to an operator which is not quasicompact. 

Example. Let X = I' and define (SnJnEN C L ( X )  through 
snx = ( (1 /2)"Xl ,  0,o. X j ,  o,xs,,  r .). 

s i x  = ((1/2)"'XI, 0.0, . . .) E K ( X )  
Then for j > 2 

and since r(S,,) = (1/2)". every S, is quasicompact. However, limn+- S, = 0, which is 
not quasicompact. 
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i n  order to see why quasicompact operators appear in this context we recall Browder's 

An element z E o ( T )  is said to belong to uss(T) if one or more of the following is 
definition of the essential specrrum o;,,(T) of an operator T E C(X) [6] .  

true: 
(i) R(; - T )  is not closed in X 
(ii) z is a limit point of u ( T )  
(iii) U:, N(z - T)' is infinite dimensional. 
By analogy with the spectral radius of T the essentia! spectra[ radius rms(T)  i s  defined to 
be 

re&?) = suptlzl : z E nesdT)l 
There are various other definitions of the essential spectrum in the literature, and in general 
they are not equivalent. Fortunately for any of the standard definitions the essential spectral 
radius is the same (see [ I l ,  1.41) and is given by the Nussbaum formula [31] 

rus(T) = lim K ( T " ) " ~ .  (21) 
n-+m 

Using the above results, we are now able to prove the following lemma. 

Lemma 3. Let U be a quasicompact operator. Then for every 0 < E < ( r ( U )  - rcss(U)) 
the set u,(U) := o ( U )  r l  ( z  : JzI > ress(U) + e ]  is not empty and consists of a finite set of 
eigenvalues with finite multiplicity. 

Proof: For U quasicompact we conclude from lemma 2 and equation (21) that rms(U) < 
r ( U ) .  The set ~ ~ ( 0 )  is not empty, since at least one point of o ( U )  lies on the circle 
{z : Jz j  = r ( U ) ) .  For every z E u,(U),  the range of z - U is dense in X but z - U is not 
invertible, hence z - U is not injective and z is an eigenvalue with finite multiplicity by 
the definition of o;(U) .  Finally, since uc(U)  is compact and contains no limit points, i t  can 

0 

Using an argument by Keller [27] we are now able to prove the following theorem 

only consist of a finite number of elements. 

which constitutes a complete description of the Brussels class. 

Theorem I .  A bounded operator on a Banach space belongs to the Brussels class if and only 
if it is quasicompact 

e" = 

Proof: 'j' (See [27, proposition 2.21) Let U belong to the Brussels class. Then there is 
a projector Q E C ( X )  such that r ( Q U Q )  c r ( U )  and P := I - Q with PU E K(X) . 
We show by induction on n that 

(22) U" - ( Q U Q ) ~ - ] U  is compact for all n E w 
For n = 1 this is trivial. Assuming that equation (22) holds for n, then 
U"" - (QUQ)"U = PULI" + QUO" - QU(QUQ)"-]U + QUP(QUQ)"- 'U 

= PUU" + Q U P ( Q U Q ) " - ' U  + QU(V - ( Q U Q ) = - ~ U ) .  
The first term in this sum is compact since PU is compact. The second term is only different 
from 0 for n = 1, in which case its compactness follows from that of PU, whereas the last 
term is compact by the induction assumption. That U is quasicompact now follows from 

lim l~(QUQ)"-'U)Il)''" = r ( Q U Q )  c r ( U ) .  
n-+m 
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'+' Let E > 0. Since U is quasicompact P can be chosen to be the projector onto the 
eigenspaces of the eigenvalues of U in u,(U), by lemma 3 P is a finite rank operator, 
which implies that PU is compact. The inequality r ( Q U Q )  < r ( U )  follows from the fact 

0 

0 F Bandtlow and P V Coveney 

that Q U Q  = QU = U Q  has no eigenvalues in u*(U). 

6. Subdynamics 

Let us return to equation (18). We show that this splitting of the evolution operator gives 
rise to independent 'subdynamics' in the following sense. 

Theorem 2. Let U belong to the Brussels class and let zi, i E { I ,  . . . , p ]  denote the poles 
of [z - PUP - q(z)]-' in A ( Q U Q ) .  Then p > 1 and there are p + 1 bounded projectors 
n('). i E IO, . . . , p )  with 

i=O 

n(')n(j) = 6-n") ' I  for i, j E (0, . . . , p )  

un(j) = nci)u for i E (0, . . . , p )  

Moreover the asymptotic evolution operators Xf )  can be written 

= n(i) 

where 

and Ci is a contour enclosing the pole zi only. The remainder operator gn obeys 

l l ~ n l l  < Ka" 

for some constant K and r ( Q U Q )  a < minie~~... . ,p~Ilzil). 

Proof: This proceeds directly. Let 0 < E < m i n ~ ~ ~ , . . , . ~ p ~ ( ~ z i ~ ]  - r ( Q U Q )  and observe 
that the Brussels decomposition of the resolvent (17) is valid for a connected subset of the 
complex z-plain, that is for (z : IzI > r (QUQ) + 6 )  except for a finite number of points, 
due to Proposition 1 and U being quasicompact. We may therefore replace the integrand 
in (19) by z " / ( z  - U )  and use the following Laurent series expansion: 

where n(') and A, are the eigenprojection and the eigennilpotent associated with zi. and 
& nCo) is holomorphic in zi , i E ( I ,  . . . , p )  with 

n(OJ := 1 - (n") + . . . + n(p)) . 
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This is a standard result and may be found i n  [25, III.6.51. Now trivially (23), (24) and 
(25) hold. Finally (26) and (27) follow from a simple integration 

82,(:)z;-f for I 6 n 

0 otherwise 
2" d z = {  + 2ni e, (2 - Zj) '+l  

while (28) is a consequence of 

and the fact that & l l ( o l  is analytic in (2 : Iz/ > r ( Q U Q )  + E )  

We have recovered the basic features of subdynamics as defined by the Brussels school. 
The temporal evolution of the system may be separated into independently evolving parts 
by virtue of the projectors no). The long time behaviour in the subspace I l ( ' )X is governed 
by (27). Note that since 

AY = 0 for n vi 
where U; is the algebraic multiplicity of zi , i.e. the dimension of n ( ' ) X ,  the evolution of a 
probability density fo at time n = 0 entirely lying in n c i l X  for n large (i.e. for n > v i )  is 
given by 

Thus, for a mode with non-vanishing eigennilpotent, i.e. for eigenvectors belonging to a 
an eigenvalue which is not simple, we get a coupling of the generalized eigenvectors. The 
decay, however, will still be exponential, since I l f n l [  is dominated by (IziI + E)" for every 
E > 0. 

7. The p-transformation 

We now give an example of a dynamical system for which the associated Frobenius-Perron 
operator (see for example [28]) on a suitably chosen Banach space is quasicompact. More 
explicitly, we shall study the following map: 

T : [O. 11 + [O. I ]  

T x  = px mod 1 p E N' 
This map is usually referred to as the ',%transformation' or the 'p-adic Rknyi map'. It has 
been extensively studied throughout the last 30 years and is nowadays considered to be the 
simplest example of a chaotic system. Only recently a generalized spectral decomposition 
of the associated Frobenius-Perron operator for p = 2 was obtained by Hasegawa and 
Saphir [43, 171 and for ,5 E Wf by Antoniou and Tasaki [I]. 

The Frobenius-Perron operator U of the dynamical system (T ,  A), where A denotes 
Lebesgue measure, can easily be calculated [28] 
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Keller 12.51 showed that the L'-spectrum of the Frobenius-Perron operator of a non-invertible 
transformation is the closed uni t  disk, hence we cannot expect U to be quasicompact on 
L'(J.). Nevertheless, the operator U turns out to be quasicompact when its domain is 
restricted to certain dense subspaces of L1(A), as we shall now prove . 

To this end, recall that for m E W, (Y E (0.11 the space Cm,a of all complex-valued 
m-times differentiable functions on [O. 11, the mth derivative of which is Holder-continuous 
with exponent 01, is dense in L'(1) and becomes a complex Banach space when furnished 
with the norm 

0 F Bandtiow and P V Coveney 

IIfIIm,e = i f ~ m  + IIf(m)IIo 
where 

and 

We shall see in the proof of proposition 3 that U is a bounded linear operator on 
(IY.~, [l,llm,o). In order to show that U is even quasicompact we need the following 
version of the Ionescu-Tulcea Marinescu ergodic theorem given by Hennion [I81 

Theorem 3 (Hennion, 1993). Let ( X ,  11.11) be a Banach space and U a bounded linear 
operator on (X, 11.ll). If there is a norm 1.1 on X .  such that 

(i) U : ( X ,  11.11) -i (X, 1.1) is compact 
(ii) for cvery n E W, there are positive r eds  R,, r., such that lim infn+&,J'/'' =: r c r ( T )  

IIu"fjl 4 R n l f l + r n l l f l l  forall  f e x  
then U is quasicompact and ress(U) < r .  

We are now able to prove the main result of this section 

Proposition 3. Let U be the Frobenius-Perron operator of the B-transformation (T, A), then 
for m E W , a  E (0, I ]  the operator U is a quasicompact endomorphism of (C"',', l l . [ l m , w )  
and res(U)  6 

ProoJ Fix m E N and (Y E (0, I]. Let f E Cm,", then 

is m-times continuously differentiable and for 0 < j < m 

P-I  
( ~ f ) o l ( x )  = p j t o  f" ' (p-I (x  t i)) 

i=O 

Furthermore, we have the following inequalities, the proof of which we shall supply later 

IUfL < Ifl, (29) 

l l(uf)(m)lla 4 B-"+"'Ilf'"'II. . (30) 
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Now, (30) implies that Uf E Cm,w. Moreover. combining (29) and (30) yields 

l l ~ f l l m , o  = WfI, + li(Uf)'"'lla 

< Ifl, + B-(m+n) I I f (m) l la  (31) 

d llfllm,a ' (32) 

Hence U E L(Cm,a) with the operator norm of U obeying 11U11 < 1. Since U1  = 1. we 
have r ( U )  = 1. 

Equation (31) also implies 

llufllm,a < Ifl, + B-(m+u) l l f l l m , @  

which can be iterated to give for n E N+ 

Clearly, I . l m  is a norm on since the natural embedding of Cm.@ in Cm is compact 
(see for example [ l l .  theorem V.l.l]), every II.Il,,,-bounded set in C'".= is l.l,-relatively 
compact and therefore 

U : (Cm,*, ll.Ilm,,d + (PU, 1.L.) 

is compact. The assertion of the proposition now follows from theorem 3: U is quasicompact 
and rus(U) < fi-("+"). We only need to prove (29) and (30). Inequality (29) follows from 
(7), which yields 

for 0 < j < m, and therefore IUf l ,  < I fl, .  Finally we have the following estimates: 

ll f 1"' Iln 
< fi-(m+c) , 

which proves inequality (30). 
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8. Discussion 

Our work shows that the possibility of an analytic continuation of the Brussels operators 
inside the spectrum of the evolution operator U, together with a restriction to compact 
projectors P (such that PU E K ( X )  ), guarantees the existence of independent subdynamics 
for U .  This result is somewhat similar to the investigation of Coveney and Penrose [8], 
who have shown that in the continuous time scenario the existence of an isolated pole of the 
resolvent of U below the real axis is ensured whenever the time-domain collision operator 
is bounded above in norm by an exponentially decaying function of time and the projector 
P is a finite range operator. The connection with our result is seen by taking into account 
that for our definition of the Brussels class the discrete time-domain collision operator is of 
geometric order (the discrete time analogue of exponentially bounded) with the least such 
bound being less than r ( U ) .  

The requirement imposed by our analysis for the existence of the discrete time Brussels 
formalism in statistical mechanics, namely that the evolution operators in question must be 
quasicompact, is less restrictive than it  might appear to be at first sight. Convergence results, 
such as central limit theorems or exponential decay of correlations obtained via spectral 
properties of the Frobenius-Perron operator are usually linked to finding suitable restrictions 
of the domain of the Frobenius-Perron operator on which it is quasicompact. For example, in 
their studies of the ergodic properties of piecewise monotonic transformations of the interval 
Hofbduer and Keller [20], Rychlik [42], and Keller [26] make use of the fact that the induced 
Frobenius-Perron operator, the spectrum of which is the whole unit disk when considered 
as an endomorphism of L ' ,  is quasicompact on the space of functions of bounded variation. 
This situation is reminiscent of the recently developed rigged Hilbert space approach to 
the Brussels formalism, wherein a spectral representation of indecomposable operators of 
a Hilbert space can be obtained for a suitable restriction of the domain of the relevant 
operator [14, 15,1,2]. The analysis carried out in the present paper also shares various 
features in common with the measure-theoretic approach to the selection of 'canonical' 
non-equilibrium ensembles recently developed by Coveney and Penrose [9]. We hope to 
return in the future with a more detailed examination of these particular relationships. 
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Appendix. The 2-transform 

The material covered here is an easy generalization of the standard methods (see, e.g., 
[24,301). 

A sequence (Tn)nEFI of bounded operators 
T, E L ( X )  is said to be of geometric order, if there exist positive reals, A and a,  and 
an integer no, such that for all n 

Let X be a complex Banach space. 

no 
lITnll < A a " .  

Then the z-transform of {TntnEFI is defined by 
m 

2[Tn] := T(z)  := ~ T , Z - " .  
n=0 
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Theorem 4 (Properties). Let {TnJnrN be a sequence of geometric order with constant a 
as in (AI) .  The z-transform Z [ T J  is unique and holomorphic in the extended annulus 
( z : I z l > a I U { ~ o ) .  

ProoJ 
powers and radius of convergence r not exceeding a by the Cauchy-Hadamard formula 

The assertion follows from the fact that Z [ T , ]  is a Laurent series with no positive 

r = Iim llTnl1''" < a .  
I2-m 

0 
Note that if 

T, = T" 

then Z[T,]  is up to a factor z identical with the von Neumann series of the resolvent of T 

Theorem 5 (Inversion formula). The inverse z-rransform 2-' is given by 

where C may be any contour enclosing all singularities of T(z). 

Proot This is just the expression for the coefficients of a Laurent series. 0 
The following theorems are particularly useful for handling difference equations. 

Theorem 6 (Shifting fheurem). If 2 [ T J  = T ( z ) ,  then for k > 0 

Proof. This follows from 

0 

with z-transforms 7 ( Z )  and Theorem 7 (Convolution theorem). Given {TnlaEN and 
l ' ( z )  respectively we can define the convolution of the two senes by 

(Tn*T,'JnsN = {XLrT , ' - i IncN 

its z-transform being given by 

2[T,*T,'] = T(z) 'T'(z) .  
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ProoJ: We only need to take into account that T, = 0 for n < 0 by definition. Then 
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U 

References 

[I] Antoniou I and Tasaki S 1992 Spectral decomposition of the Renyi map J. Phy. A, Muth. Gen. 26 73-94 
[2] Antoniou I and Tasak~ S 1992 Generalized spectral decomposition of the ,9-adic bakcr's transformation and 

[3] Bdeseu R 1975 Equilibrium ond Non-Equilibrium Slotrsricnl Meehonm (New York: Wrley-lntencience) 
[4] Bdeseu R and Misguich J H 1974 Kinetic equations far plasmas subjected to a strong time-dependent external 

[5] Boltzmann L 1896 Vorlesungen iiber Gasthevrie (Leipng: Barth) (Engl. VansI. 1964 Lecture$ on Gar Thheoty 

[6] Browder F E 1961 On the spectral theory of elliptic differential opentors I Math. Ann. 142 22-130 
[7] Coveney P V 1987 Subdynamics in the time-dependent formalism Physicn 143A 12346 
[8] Coveney P V and Penrose 0 1992 On the validity of the Bmssels formalism in swtistid mechanics J. Phys. 

191 Covency P V and Penrose 0 1994 Is there a unonical nonequilibrium ensemble? Proe. R. Soc. A 447 in 

inirinsic irreversibility Physic= 190A 303-29 

field. Part 1. General theory J. Plasma Phys. 11 357-75 

(University of California Press)) 

A: Mnrh. Gen. 25 4947-66 

press 
[IO] Dunford N and Schwam J 1958 Lineor Operotors vol I (New York: Wiley Interscience) 
[ I  I ]  Edmunds D E and Evms W D 1987 Speetrnl7heop of DrjgPrenriol Operators (Oxford: Clarendon) 
[I21 George C, Prigogine I and Rosenfeld L 1972 The macroscopic level of quantum mechanics K. Danske 

[I31 Grecos A P. Gou T and Gou W 1975 Some formal aspects of subdynamics Physicn 8OA 421-46 
[I41 Hasegawa H H and Saphir W C 1992 Decaying eigenstates for simple chaotic systems Phys, Lett, 161A 

1151 Hasegawa H H and Saphir W C 1992 Non-equilibrium statistical mechmics of the baker map: Ruelle 

[I61 Hasegawa H H and Saphir W C 1991 Kinetic theory forthe standard map SolitonsnndChnos ed I Antoniou 

[I71 Hascgawa H H and Saphir W C 1992 Unitarily and irreversibility in chaotic systems Phys. Rcv A 46 7401-23 
[I81 Hcnnion H 1993 Sur un t h d o r h  spectral et son application aux noyaux lipchitziens Pme. Amcr. Math. Soc. 

[I91 Heuser H C 1982 Funcriclnol Analysis (New York Wiley Interscience) 
[20] Holbauer F and Keller G 1982 Ergodic properties of invariant measures for piecewise monotonic 

[21] vm Hove L 1955 Quantum-mechanical perturbation giving rise to astatistical vansport equation Physico 21 

1221 van Hove L 1957 The approach to equilibrium in quantum staiitics Physico W 441-80 
[ U ]  Iowen J M 1982 Statistical mechanics of systems with strongly time-dependent Hamiltonians PhD thesis 

[24] Jury E I 1964 Theoty and Application ofthe Z.Transjr,rm Methud (New York: Wiley) 
[251 Kat0 T 1976 Perfurbution Thewyfi,r Linear Operamrs (Berlin: Springer) 
1261 Keller G 1984 On the rate of convergence to equilibrium in one-dimensional systems Commun. Math. Phys. 

1271 Keller G 1989 Markov extensions. zeta functions. and Fredholm theory for piecewise invertible dynamical 

[28] Lasota A and Mackey M C. 1985 Pmbnbilislic Properties ofDelerminislic Systems (Cambridge: Cambridge 

Wdensk, Selrk. Mut..fis. Meddr. 43/12 1-44 

471A76 

resonances and subdynamics Phys. Lett. 161A 477-488 

and F Lambert (Berlin: Springer) 

118 627-34 

transformations Math. 2. 180 119-40 

517-40 

University of Cambridge 

96 181-193 

systems T r m .  Amer Math. Sue. 314 433-97 

University Press) 



On the discrete time version of the Brussels formalism 7955 

1291 hlontroll E W 1962 Some remarks on the integral equations of statistical mechanics Fundamenid Problem 

1301 Muth E J 1977 Trumfirm Mcrhod.? with Applicnrions Io Engineering and Opemlions Reseureh (New Yo* 

[31] Nusbaum R D 1970 The radius of the essential spectrum Duke Maih. J.  37 473-8 
[32] Nakajima S 1958 On quantum theory of transport phenomena P w ~ .  Thew. Phys. 20 948-59 
1331 Pauli W 1928 iIber das H-Theorem vom Anwachsen der Entropie vom Standpunkt der Quantenmechanik 

Probleme der modemen Physik / Amold Somnqfeeld zum 60 Geburistage gewidmet YO" seinen Schiilern 
ed P Debye (Leipzig: H i m l )  

m Siotirricol Mechums ed E G D Cohen (Amsterdam North-Holland) 

Prentice-Hall) 

[34] Petmsky T Y and Hasegawa H H 1989 Subdynamics and nonintegrable systems Physiea 160A 175-242 
[35] Pemsky T Y. Prigogine I and Tasaki S 1991 Quantum theory of nonintegrable systems Physics 173A 

[36] P 6 l p  G and Szeg6 G 1972 Prob lem and Theorem b .4nalysir I (Grmdkhren der muthemoiischen 

[37] Prigogine I, George C and Henin F 1969 Dynamical and statistical descriptions of N-body systems Physica 

[38] Prigogine I, George C, Henin F and Rosenfeld L 1973 A unified formulation of dynamics and thermodynamics 

[39] Prigogine 1, Petrosky T Y, Hasegawa H H and S Tasaki 1991 Integrability and chaos in classical and quantum 

(401 Prigogine I and P Resibois 1961 On the kinetics of the approach to equilibrium Phycico 27 6 2 9 4 6  
[41] Reed M and Simon B 1972 Methods of Modern Mothematlenl Physic.s/Vrlme 1: Funclional Analysis (New 

[42] Rychlik M 1983 Bounded variation and invarianr measures Siudiu Maih. 76 69-80 
[43] Saphir W C and Hasegawa H H 1992 Spectral representations of the Bernoulli map Phys. Lelt 171A 3 17-22 
[44] S p b  H 1980 Kinetic equations from Hamiltonian dynamics. Markovian limits Rev. Mod. Phys. 53 569-615 
[4S] Zwannzig R 1960 Euemble methods in the theory of irreversibility 1. Chem Phyr. 33 1338-41 
[46] Zwanzig R 1964 On the identity of three generalized master equations Physica 30 1109-23 

175-242 

Wissenschofren 1931 (Berlin: Springer) 

45 418-34 

C h m  Scr. 4 5-32 

mechanics Chum Solillilonr & Fractals 13-24 

York: Academic) 


